Bayesian isotonic regression and trend analysis.

نویسندگان

  • Brian Neelon
  • David B Dunson
چکیده

In many applications, the mean of a response variable can be assumed to be a nondecreasing function of a continuous predictor, controlling for covariates. In such cases, interest often focuses on estimating the regression function, while also assessing evidence of an association. This article proposes a new framework for Bayesian isotonic regression and order-restricted inference. Approximating the regression function with a high-dimensional piecewise linear model, the nondecreasing constraint is incorporated through a prior distribution for the slopes consisting of a product mixture of point masses (accounting for flat regions) and truncated normal densities. To borrow information across the intervals and smooth the curve, the prior is formulated as a latent autoregressive normal process. This structure facilitates efficient posterior computation, since the full conditional distributions of the parameters have simple conjugate forms. Point and interval estimates of the regression function and posterior probabilities of an association for different regions of the predictor can be estimated from a single MCMC run. Generalizations to categorical outcomes and multiple predictors are described, and the approach is applied to an epidemiology application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-Dual Active-Set Methods for Isotonic Regression and Trend Filtering

Isotonic regression (IR) is a non-parametric calibration method used in supervised learning. For performing large-scale IR, we propose a primal-dual active-set (PDAS) algorithm which, in contrast to the state-of-the-art Pool Adjacent Violators (PAV) algorithm, can be parallized and is easily warm-started thus well-suited in the online settings. We prove that, like the PAV algorithm, our PDAS al...

متن کامل

A new parameter Learning Method for Bayesian Networks with Qualitative Influences

We propose a new method for parameter learning in Bayesian networks with qualitative influences. This method extends our previous work from networks of binary variables to networks of discrete variables with ordered values. The specified qualitative influences correspond to certain order restrictions on the parameters in the network. These parameters may therefore be estimated using constrained...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

Learning Bayesian network parameters under order constraints

We consider the problem of learning the parameters of a Bayesian network from data, while taking into account prior knowledge about the signs of influences between variables. Such prior knowledge can be readily obtained from domain experts. We show that this problem of parameter learning is a special case of isotonic regression and provide a simple algorithm for computing isotonic estimates. Ou...

متن کامل

Bayesian Isotonic Regression for Discrete Outcomes

1 SUMMARY. This article proposes a semiparametric Bayesian approach for inference on an unknown isotonic regression function, f (x), characterizing the relationship between a continuous predictor, X, and a response variable, Y , adjusting for covariates, Z. A novel prior formulation is used, which avoids parametric assumptions on f (x), while enforcing the non-decreasing constraint and assignin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 2004